Fatty Acid and Associated Gene Expression Analyses of Three Tree Peony Species Reveal Key Genes for α-Linolenic Acid Synthesis in Seeds
نویسندگان
چکیده
The increasing demand for healthy edible oil has generated the need to identify promising oil crops. Tree peony (Paeonia section Moutan DC.) is a woody oil crop with α-linolenic acid (ALA) contributing for 45% of the total fatty acid (FA) content in seeds. Molecular and genetic differences that contribute to varied FA content and composition among the wild peony species are, however, poorly understood. Analyses of FA content and composition during seed development in three tree peony species (Paeonia rockii, P. potaninii, and P. lutea) showed varied FA content among them with highest in P. rockii, followed by P. potaninii, and P. lutea. Total FA content among these species increased with seed development and reached its maximum in its final stage. Seed FA composition analysis of the three species also revealed that ALA (C18:3) was the most abundant, followed by oleic (C18:1) and linoleic (C18:2) acids. Additionally, quantitative real-time RT-PCR analyses of 10 key seed oil synthesis genes in the three tree peony species revealed that FAD3, FAD2, β-PDHC, LPAAT, and Oleosin gene expression levels positively correlate with total FA content and rate of accumulation. Specifically, the abundance of FAD3 transcripts in P. rockii compared with P. potaninii, and P. lutea suggests that FAD3 might play an important role in synthesis of ALA via phosphatidylcholine-derived pathway. Overall, comparative analyses of FA content and composition in three different peony species revealed a correlation between efficient lipid accumulation and lipid gene expression during seed development. Further characterization and metabolic engineering of these key genes from peonies will allow for subsequent improvement of tree peony oil quality and production.
منابع مشابه
Fatty acid profile in the seeds and seed tissues of Paeonia L. species as new oil plant resources
Most common plant oils have little α-linolenic acid (C18:3(Δ9,12,15), ALA) and an unhealthy ω6/ω3 ratio. Here, fatty acids (FAs) in the seeds of 11 species of Paeonia L., including 10 tree peony and one herbaceous species, were explored using gas chromatograph-mass spectrometer. Results indicated that all Paeonia had a ω6/ω3 ratio less than 1.0, and high amounts of ALA (26.7-50%), oleic acid (C...
متن کاملRNA Sequencing and Coexpression Analysis Reveal Key Genes Involved in α-Linolenic Acid Biosynthesis in Perilla frutescens Seed
Perillafrutescen is used as traditional food and medicine in East Asia. Its seeds contain high levels of α-linolenic acid (ALA), which is important for health, but is scarce in our daily meals. Previous reports on RNA-seq of perilla seed had identified fatty acid (FA) and triacylglycerol (TAG) synthesis genes, but the underlying mechanism of ALA biosynthesis and its regulation still need to be ...
متن کاملEvaluation of SCD and FASN Gene Expression in Baluchi, Iran-Black, and Arman Sheep
Background: With the increasing concern for health and nutrition, dietary fat has attracted considerable attention. The composition of fatty acids in the diet is important because they are associated with major diseases including cancers, diabetes, and cardiovascular disease. The fatty acid synthase (FASN) and stearoyl-CoA desaturase (delta-9-desaturase) (SCD) genes affect fatty acid compositio...
متن کاملStudy of Gene Expression Signatures for the Diagnosis of Pediatric Acute Lymphoblastic Leukemia (ALL) Through Gene Expression Array Analyses
Background: Acute lymphoblastic leukemia (ALL) as the most common malignancy in children is associated with high mortality and significant relapse. Currently, the non-invasive diagnosis of pediatric ALL is a main challenge in the early detection of patients. In the present study, a systems biology approach was used through network-based analysis to identify the key candidate genes related to AL...
متن کاملIdentification and Expression of Fructose-1,6-Bisphosphate Aldolase Genes and Their Relations to Oil Content in Developing Seeds of Tea Oil Tree (Camellia oleifera)
Tea oil tree (Camellia oleifera, Co) provides a fine edible oil source in China. Tea oil from the seeds is very beneficial to human health. Fructose-1,6-bisphosphate aldolase (FBA) hydrolyzes fructose-1,6-bisphosphate into dihydroxyacetone phosphate and glyceraldehyde 3-phosphate, two critical metabolites for oil biosynthesis. The objectives of this study were to identify FBA genes and investig...
متن کامل